3.2.68 \(\int \frac {(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x^6} \, dx\) [168]

Optimal. Leaf size=331 \[ \frac {361 x \left (5+\sqrt {13}+2 x^2\right )}{15 \sqrt {3+5 x^2+x^4}}-\frac {722 \sqrt {3+5 x^2+x^4}}{15 x}-\frac {\left (40-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{5 x^3}-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}-\frac {361 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{15 \sqrt {3+5 x^2+x^4}}+\frac {103 \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {6 \left (5+\sqrt {13}\right )} \sqrt {3+5 x^2+x^4}} \]

[Out]

-1/5*(-5*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^5+361/15*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2+3)^(1/2)-722/15*(x^4+5*x^2+3)^(
1/2)/x-1/5*(-87*x^2+40)*(x^4+5*x^2+3)^(1/2)/x^3-361/90*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/
2)))^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^
2*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)+10
3*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF(x*(30+6*13^(1/2))^(1/2)/(36+x^2*
(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1
/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)/(30+6*13^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1285, 1295, 1203, 1113, 1149} \begin {gather*} \frac {103 \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) F\left (\text {ArcTan}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {6 \left (5+\sqrt {13}\right )} \sqrt {x^4+5 x^2+3}}-\frac {361 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\text {ArcTan}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{15 \sqrt {x^4+5 x^2+3}}-\frac {722 \sqrt {x^4+5 x^2+3}}{15 x}+\frac {361 x \left (2 x^2+\sqrt {13}+5\right )}{15 \sqrt {x^4+5 x^2+3}}-\frac {\left (2-5 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{5 x^5}-\frac {\left (40-87 x^2\right ) \sqrt {x^4+5 x^2+3}}{5 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^6,x]

[Out]

(361*x*(5 + Sqrt[13] + 2*x^2))/(15*Sqrt[3 + 5*x^2 + x^4]) - (722*Sqrt[3 + 5*x^2 + x^4])/(15*x) - ((40 - 87*x^2
)*Sqrt[3 + 5*x^2 + x^4])/(5*x^3) - ((2 - 5*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(5*x^5) - (361*Sqrt[(5 + Sqrt[13])/6]
*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + S
qrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(15*Sqrt[3 + 5*x^2 + x^4]) + (103*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5
 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])
/(Sqrt[6*(5 + Sqrt[13])]*Sqrt[3 + 5*x^2 + x^4])

Rule 1113

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*a + (b + q
)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*Elli
pticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1149

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[x*((b +
q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q
/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1203

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1285

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*
x)^(m + 1)*(a + b*x^2 + c*x^4)^p*((d*(m + 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Dist[2*(p
/(f^2*(m + 1)*(m + 4*p + 3))), Int[(f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2*a*e*(m + 1) - b*d*(m + 4*p
 + 3) + (b*e*(m + 1) - 2*c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c
, 0] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1295

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f
*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rubi steps

\begin {align*} \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^6} \, dx &=-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}-\frac {1}{5} \int \frac {\left (-120-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{x^4} \, dx\\ &=-\frac {\left (40-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{5 x^3}-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}+\frac {1}{15} \int \frac {2166+1545 x^2}{x^2 \sqrt {3+5 x^2+x^4}} \, dx\\ &=-\frac {722 \sqrt {3+5 x^2+x^4}}{15 x}-\frac {\left (40-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{5 x^3}-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}-\frac {1}{45} \int \frac {-4635-2166 x^2}{\sqrt {3+5 x^2+x^4}} \, dx\\ &=-\frac {722 \sqrt {3+5 x^2+x^4}}{15 x}-\frac {\left (40-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{5 x^3}-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}+\frac {722}{15} \int \frac {x^2}{\sqrt {3+5 x^2+x^4}} \, dx+103 \int \frac {1}{\sqrt {3+5 x^2+x^4}} \, dx\\ &=\frac {361 x \left (5+\sqrt {13}+2 x^2\right )}{15 \sqrt {3+5 x^2+x^4}}-\frac {722 \sqrt {3+5 x^2+x^4}}{15 x}-\frac {\left (40-87 x^2\right ) \sqrt {3+5 x^2+x^4}}{5 x^3}-\frac {\left (2-5 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{5 x^5}-\frac {361 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{15 \sqrt {3+5 x^2+x^4}}+\frac {103 \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {6 \left (5+\sqrt {13}\right )} \sqrt {3+5 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.20, size = 244, normalized size = 0.74 \begin {gather*} \frac {-108-810 x^2-3438 x^4-4040 x^6-634 x^8+30 x^{10}+361 i \sqrt {2} \left (-5+\sqrt {13}\right ) x^5 \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} E\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )-i \sqrt {2} \left (-260+361 \sqrt {13}\right ) x^5 \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} F\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )}{30 x^5 \sqrt {3+5 x^2+x^4}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^6,x]

[Out]

(-108 - 810*x^2 - 3438*x^4 - 4040*x^6 - 634*x^8 + 30*x^10 + (361*I)*Sqrt[2]*(-5 + Sqrt[13])*x^5*Sqrt[(-5 + Sqr
t[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6
 + (5*Sqrt[13])/6] - I*Sqrt[2]*(-260 + 361*Sqrt[13])*x^5*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5
+ Sqrt[13] + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(30*x^5*Sqrt[3 + 5*
x^2 + x^4])

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 259, normalized size = 0.78

method result size
risch \(\frac {15 x^{10}-317 x^{8}-2020 x^{6}-1719 x^{4}-405 x^{2}-54}{15 x^{5} \sqrt {x^{4}+5 x^{2}+3}}-\frac {8664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (\EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-\EllipticE \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}+\frac {618 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}\) \(238\)
default \(-\frac {6 \sqrt {x^{4}+5 x^{2}+3}}{5 x^{5}}-\frac {7 \sqrt {x^{4}+5 x^{2}+3}}{x^{3}}-\frac {392 \sqrt {x^{4}+5 x^{2}+3}}{15 x}+\frac {618 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {8664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (\EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-\EllipticE \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}+x \sqrt {x^{4}+5 x^{2}+3}\) \(259\)
elliptic \(-\frac {6 \sqrt {x^{4}+5 x^{2}+3}}{5 x^{5}}-\frac {7 \sqrt {x^{4}+5 x^{2}+3}}{x^{3}}-\frac {392 \sqrt {x^{4}+5 x^{2}+3}}{15 x}+\frac {618 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {8664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (\EllipticF \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-\EllipticE \left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}+x \sqrt {x^{4}+5 x^{2}+3}\) \(259\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^6,x,method=_RETURNVERBOSE)

[Out]

-6/5/x^5*(x^4+5*x^2+3)^(1/2)-7*(x^4+5*x^2+3)^(1/2)/x^3-392/15*(x^4+5*x^2+3)^(1/2)/x+618/(-30+6*13^(1/2))^(1/2)
*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+
6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-8664/5/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1
-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(5+13^(1/2))*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3
^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))+x*(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^6,x, algorithm="maxima")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^6, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^6,x, algorithm="fricas")

[Out]

integral((3*x^6 + 17*x^4 + 19*x^2 + 6)*sqrt(x^4 + 5*x^2 + 3)/x^6, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac {3}{2}}}{x^{6}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x**6,x)

[Out]

Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x**6, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^6,x, algorithm="giac")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^6, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (3\,x^2+2\right )\,{\left (x^4+5\,x^2+3\right )}^{3/2}}{x^6} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(3/2))/x^6,x)

[Out]

int(((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(3/2))/x^6, x)

________________________________________________________________________________________